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Introduction

Heterosynaptic plasticity is a form of ‘off-target’ synap-

tic plasticity where unstimulated synapses change strength.

Herewe propose that one purpose of heterosynaptic plastic-

ity is to encourage small-world connectivity [6, 7]. We com-

pare different plasticity rules in abstract weighted graphs,

finding that they yield distinct network architectures.

Heterosynaptic plasticity

Heterosynaptic plasticity is where synapses that were not

directly activated undergo weight changes.

Figure 1. Illustration of homosynaptic and heterosynaptic plasticity

It can assume either a cooperative or competitive role in the

alteration of synaptic weights (Figure 2).

Cooperative Competitive

Figure 2. Cooperative (left) and competitive (right) directions of weight change in

heterosynaptic plasticity

Heterosynaptic plasticity can operate locally on single den-

drites at neighbouring spines, or across neurons and whole

networks [4].

Method: Heterosynaptic plasticity network model

Figure 3. Cases for weight updates in model

Each edge is either

(1) between two active nodes ,

(2) between one active and one inactive node, or

(3) between two inactive nodes .

Based on these cases, we define the update rules:

R1 =
{

wi,jn+1 = wi,jn
+ η1(1 − wi,jn

) Case (1)

wi,jn+1 = η2wi,jn
otherwise

}

R2 =


wi,jn+1 = wi,jn

+ γ1(1 − wi,jn
) Case (1)

wi,jn+1 = γ2wi,jn
Case (2)

wi,jn+1 = γ3wi,jn
, Case (3)


R3 =


wi,jn+1 = wi,jn

+ κ1(1 − wi,jn
) Case (1)

wi,jn+1 = wi,jn
+ κ2(1 − wi,jn

) Case (2)

wi,jn+1 = κ3wi,jn
, Case (3)


where R1 is a homosynaptic rule, and R2 and R3 are versions

of competitive/cooperative heterosynaptic rules.

ηi, γi and κi are learning parameters. We set

η1 = γ1 = κ1 = 0.2
η2 = 1 − η1 = 0.8
η2 = γ3 = κ3 = 0.8

γ2 = 1 − γ1/2 = 0.9
κ2 = κ1/2 = 0.1

Method: Activity patterns

We define the activity patterns of the network based on

different Beta distributions (with varying parameters α, β).
This determines the probability of each node being active.

Network synchrony, firing rates, spike bursts and synaptic

weights follow a log-normal distribution (Fig 4) [3], which we

can partially replicate with beta distributions (Fig 5 blue line),

as well as examine other less realistic activity patterns.

Figure 4. Log-normal distribution of

neural activity (Petersen & Berg, 2016)

Figure 5. Example Beta distributions

α = 1.5, 4, 4; β = 4, 1.5, 4

Method: Graph theorymeasures

Weighted clustering coefficient:

C̃ =
∫ 1

0
Ct dt

where Ct = C(At) for At
ij = 1 if wij ≥ t and 0 otherwise.

C(i) = |{ejk : vj, vk ∈ Ni, ejk ∈ E}|
ki(ki − 1)

Average shortest path length (Dijkstra’s algorithm)

L = 1
n(n − 1)

∑
i,j∈V
i 6=j

dij

Small-world measure ↓

Small-world topologies

A small-world network [7] has high degrees of clustering

& low average shortest path length.

σ = C/Crand

L/Lrand
> 1

Results

Below is a simulation of how the network characteristics

evolve under the homosynaptic (R1) and heterosynaptic (R2

& R3) plasticity rules over 100 timesteps.

Figure 6. Graph theory measures for the three rules (N = 50 nodes)

Given the probability distribution of activity, we can find a closed form

solution for the weight matrix, which saves numerical simulations:

R1: w∞
i,j ≈

η1pij

1 − (pij − pijη1 − pijη2 + η2)

R2: w∞
i,j ≈

pijγ1
1 − (pij(1 − γ1 − 2γ2 + γ3) + qij(γ2 − γ3) + γ3)

R3: w∞
i,j ≈

(pij(κ1 − 2κ2) + qijκ2)
1 − (pij(−1 − κ1 + 2κ2 + κ3) + qij(1 − κ2 − κ3) + κ3)

where pi,j is the probability of node i and node j
being active, and qi,j is the probability of node i or

node j being active.

Figure 7. Weight matrices for example network of 20 nodes

Results continued

Small-world measures across network sizes

Figure 8. Small-world measures across different sizes of networks

Beta distributions activity & small-world measures

Figure 9. Average small-world measures across different activity distributions

(N=100)

Distribution of weights weighted node degrees in the three

plasticity rules under the Beta(1.5, 4) activity:
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Figure 10. Weight and weighted node degree distributions (N=100); Example

data from brains (far right)

Future ideas

This work can be extended with greater complexity, e.g.

directed graphs, more complicated activity dynamics, use

of spatial proximity and correlations in setting individu-

alised learning rates. Other ideas include implementing

some of the resultant networks in reservoirs, using het-

erosynaptic plasticity in Hopfield models, and studying

brain connectome data to find if similar structural signa-

tures exist as in these networks.

Conclusion

Simple plasticity rules make a big difference to weighted net-

work architectures. This work shows that heterosynaptic

plasticity – in certain neural activity patterns – encourages

small-world characteristics. This may have implications for

optimised computational capacity and robustness.
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