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Introduction

Reservoir computing is a framework where a fixed recurrent

neural network (RNN) is used to process input signals and

perform computations. Reservoirs are typically randomly ini-

tialised, but it is not fully known how connectivity affects

performance, and whether particular structures might yield

advantages on specific or generic tasks. Simpler topologies

often perform equally well as more complex networks on

prediction tasks [5]. We check performance differences of

reservoirs on four task types using the connectomes of C.

elegans and drosophila larval mushroom body [1, 4] in com-

parison with varying degrees of randomisation.

Background: Reservoir Computing

In reservoir computing a random RNN is used as a fixed,

large-scale dynamical system, called the reservoir, to process

temporal signals and perform computations [2]. Reservoirs

have rich dynamics allowing complex non-linear transforma-

tions of their input. The dynamics are driven by the equation

x(t + 1) = (1 − α)x(t) + αf (W x(t) + W inuin(t))

Figure 1. Adapted [6] illustration of the setup of a reservoir.

Brain Connectomes

In this work we used the synaptic resolution connectomes

of drosophila larval mushroom body and male C. elegans

[1, 4]. These networks have similar sizes (N ≈ 380).

Figure 2. Heatmap plots (log scale) of the connectivity matrices.

Different Computational Tasks

Working memory task: Random inputs X(t) ∼
Uniform(−0.5, 0.5) are presented to the network, and it

learns delayed versions. Each output neuron Yτ presents

the input delayed by τ . Performance is calculated as the

cumulative squared Pearson correlation coefficient:

Working Memory Capacity =
∑

τ

ρ2(yi, ŷi)

Figure 3. Working Memory Task: True data (left) and example output (right)

Sequence recall: A random sequence is presented to the

reservoir and following a cue the reservoir must reproduce

it. It is trained over 200 trials and tested for 50. The squared

Pearson correlation coefficient between the true output and

the reservoir output is computed.
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Figure 4. Sequence Recall Task

Perceptual decision making task: A noisy visual stimulus in the

form of random dot motion (where dots move with a specified

coherence level) is presented to the reservoir. The output provides

a decision of the coherence level. Reciprocal mean squared error is

used as a measure of performance:

Decision Making Performance =

(
1
N

N∑
i=1

(yi − ŷi)2

)−1

Coherence Level

Figure 5. Perceptual Decision Making Task

Chaotic time-series prediction:We train the reservoir on a set

of Lorenz data [2, 3], and then provide the system with a random

point on the Lorenz trajectory, and measure the valid Lyapunov

time for which the reservoir can accurately predict the true

trajectory. We calculate the normalised mean squared error,

NMSE = ‖u(t) − ũ(t)‖√
〈‖u(t)‖2〉

and we measure, in Lyapunov time, the point at which the predicted

trajectory exceeds a specified NMSE threshold, set at 0.5.

Figure 6. Lorenz Prediction Task

Randomisation Methods

We compare the performances of connectome-based reser-

voirs and equivalent random reservoirs, ensuring the same size,

sparsity, and spectral radius.

1 Degrees of randomisation: 0, 0.25, 0.5, 0.75, and 1.0 (where

0 is the original connectome, and 1.0 is full randomisation

of connectome weights). We include “Totally Random”

reservoirs with a uniform distribution of weights.

2 We then randomise the connectomes while

preserving the topology, i.e. uniformly randomise the

nonzero weights while maintaining the zero weights.

3 Varying the excitation to inhibition (E-I) ratio within the

reservoir network (ratio of positive to negative weights in

W ). The ratios we implement in the reservoirs are 1 : 0
(entirely excitatory), 4 : 1 (weighted towards excitation),

and 1 : 1 (equal excitation and inhibition). These are

allocated randomly.

1. Results: Randomisation Levels

Figure 7. Task performance across different randomisation levels: more random

gives better performance.

2. Results: Preserving Topology

Figure 8. Performance for different topologies: there is surprisingly little

difference.

3. Results: Varying E-I Ratio

Figure 9. Different E-I ratios: in general, greater degrees of inhibition lead to

better performance.

Future Ideas

The connectomes used in this studymaynot be optimal for

the tasks presented here; the use of alternative connec-

tomes from different organisms and brain regions could

give different results. The tasks used here are of general

computational interest, but may not be particularly rele-

vant for biological neural networks. Using alternative tasks

might also give further interesting and differing outcomes.

Conclusions

This work demonstrates that reservoir computing is surpris-

ingly robust across network architectures and tasks such

as perceptual decision making and time-series prediction,

and that random networks perform significantly better than

some biological neural networks in two memory-related

tasks. This may be related to richer dynamics of random

reservoirs and their relation to the Echo State Property.
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