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Introduction

The Echo State Network (ESN) framework [3] is an efficient

computational paradigm & has been suggested as a model

of brain function [2]. It is unknown how structure influences

function & robustness of ESNs. We used biological networks

[5] to study this, compared with randomly initialised ESNs.

Echo State Networks & Drosophila

The setup involves an input & recurrent layer, which remain

fixed, & an output layer which is trained by linear regression.
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x(t + 1) = (1 − α)x(t) + αf (W x(t) + W inuin(t))

We used a hierarchical stochastic block model [4, 1] to in-

fer communities in the larval Drosophila melanogaster Con-

nectome (Conn). These subnetworks were used as bases

for ESNs. For comparison we generated equivalent random

Erdős-Rényi (ER) & Configuration model (CFG) ESNs.

Dynamical Regimes
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where λi[k] is the ith
eigenvalue of the Jaco-

bian of the ESN at time k.

δφ = 1 − Ec

Etot
where Ec, Etot

denote the energies of the

Fast Fourier Transform of the

input signal & the ESN.
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Figure 1. Performances & errors for the 6 tasks across the 9 subnetworks.

Measuring the Sparsity of Neural Engagement
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Weighted Task Variance (WTV)

of neuron i on Task A measures

the weighted contribution & en-

gagement of a neuron during

an activity. Participation ratio

(PR) measures how evenly dis-

tributed a quantity is:

PR = (
∑

i xi)2∑
i x2

i

We calculated mean WTV par-

ticipation across the subnetworks & tasks:

Figure 2. Mean Participation Ratio of WTV across 9 subnetworks & 6 tasks.

Pruning Nodes from Networks

The Conn ESNs have lower participation ratio of WTV in

Tasks 1–4, suggesting more sparse neural engagement,

while that of ER & CFG ESNs is more distributed.

We checked this by pruning nodes from the networks in

order of increasing WTV.

Figure 3. Performance & criticality for example subnetwork across pruning.

Network Structure
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Figure 4. Correlations between self-recurrency & WTV across all 9 subnetworks.C
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Node in-degree correlations

Node out-degree correlations

Figure 5. Correlations between node out-degree & WTV across 9 subnetworks.

Figure 6. Node degree vs WTV (from one example subnetwork and Tasks 1 & 5).

Connectome Neuron Annotations

Figure 7. Relative importance score of different cell types from the connectome.

Conclusions

Conn topologies yield ESNs with dynamical regimes that

vary from conventional ESNs, with differing boundaries

between chaos, linearity, & non-linearity.

The task performances of Conn ESNs are comparable

(other than memory) to conventional networks.

Conn ESNs exhibit a more sparse neural engagement.

We checked if this suggests efficiency & robustness by

pruning nodes.

Identifying structural features (such as reciprocity, node

degree, & biological annotation) linked to neural

contribution points out a potential way of generating

more efficient, robust, & task-specific networks.

FutureWork

Weaim to use the structural & biological characteristicswe

have linked with WTV, sparseness, and task specificity to

generate networks with these properties enhanced. We

want to see if we can use the insights here to initialise

better performing, more efficient and robust ESNs.
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