
Synaptic Maturation Project

J McAllister and C O’Donnell

1 Intro

The model follows the following framework, with 3 possible states and the transitions between them:

Potential SynapsePool
creation−−−−−−−⇀↽−−−−−−−

elimination
ImmaturePopulation

maturation−−−−−−−−⇀↽−−−−−−−−−
dematuration

MaturePopulation

For synapses in the Mature Population, we also model “synaptic size”. When a synapse becomes
mature, we initiate a size of 0, and then simulate the stochastic dynamics of the synaptic weight
using a Kesten process

xt+1 = ϵtxt + ηt

where xt is the synaptic size at time t and ϵt and ηt are random variables drawn from some distri-
bution (we use Gaussian, with the mean of ϵ near 1 — or just below — and the mean of η near 0,
to ensure a stationary distribution).

2 Model 1: Random Walks

We first model this setup using random walks (with Gillespie’s algorithm) and predefined transi-
tion probabilities c, e,m, i, for creation, elimination, maturation and immaturation (dematuration)
respectively. We set parameters such as potential synapse pool size, time, and Kesten process time
step. When a synapse “dematures”, we adopt a simplified approach by removing those synapses of
size 0. This random walk model has the advantage that its stochastic nature captures the random-
ness inherent in biological processes, providing a realistic simulation of individual synapse behaviour.
However, it is more computationally expensive and less analytically insightful (being reliant on sim-
ulations).

Below is an example simulation of this model, with parameters
total_time = 100.0

total_pool_size = 1000

c, m, e, i = 0.2,0.2,0.01,0.05

epsilon, eta = 1.0, 0.0

sigma_epsilon, sigma_eta = .5, .5

kesten_timestep = 0.01

Figure 1: Single simulation of populations
using Gillespie’s algorithm

Figure 2: Final distribution of synaptic sizes

1

We can also keep track of the synapse sizes over time:

Figure 3: Evolution of the distribution of synaptic sizes over time.

3 Model 2: Differential Equations

3.1 Setup

We then defined a set of differential equations to model the setup in another way. The equations are as
follows:

dNI

dt
= cNP − (e+m)NI + iNM

dNM

dt
= mNI − iNM

dNP

dt
= eNI − cNP

where c, e,m, i are as before, and NI , NM , NP denote the number of Immature, Mature, and Potential
(pool) synapses. Again, when a synapse “dematures”, we remove those synapses of size 0. This differential
equations model preserves the stochasticity of synapse sizes (with the Kesten process), but loses the stochastic
nature of the state transitions and models average population behaviour. However, it is more computationally
efficient and lends itself more easily to analysis.

Using the same parameter values as in Section 2, this gives:

Figure 4: Populations solution using
differential equations

Figure 5: Final distribution of synaptic sizes

This closely matches the random walk version. To check, let us run multiple trials.

2

3.2 Multiple Trials

We run the above models over N trials (e.g. N=10 below) and this produces:

Figure 6: Multiple trials of Random Walks (top) and Differential Equations (bottom).

3.3 Steady State Solutions to the Differential Equations

Taking the differential equations

dNI

dt
= cNP − (e+m)NI + iNM

dNM

dt
= mNI − iNM

dNP

dt
= eNI − cNP

we can find the final steady state values of NI , Nm, NP by letting the derivatives equal 0 and solving.

This gives

0 = cNP − (e+m)NI + iNM ⇒ cNP = (e+m)NI − iNM

0 = mNI − iNM ⇒ mNI = iNM

0 = eNI − cNP ⇒ eNI = cNP

We also have that NI +NM +NP = total. This gives us:

NI +
m

i
NI +

e

c
NI = total

i

m
NM +NM +

ei

cm
NM = total

c

e
NP +

cm

ei
NP +NP = total

which yields the solutions:

NI =
total

(1 + m
i
+ e

c
)

NM =
total

(1 + i
m

+ ei
cm

)

NP =
total

(1 + c
e
+ cm

ei
)

3

Figure 7: Differential equations model with steady state solutions

3.4 Phase Plane (Vector Field)

Let us plot the phase plane of the system. This is a graphical representation of a dynamical system with
two state variables. Each point on the plane represents a specific state of the system, and trajectories
show how these states evolve over time. A vector field on the phase plane consists of arrows at each point
indicating the direction and speed of the system’s evolution at that state.

Figure 8: Phase plane of immature (x axis) vs mature (y axis) populations over time. The
coloured lines show the different trajectories of populations with different initial values.

We can also plot the nullclines, i.e. the lines where the derivatives are zero. So for the first, we have that

cNP − (e+m)NI + iNM = 0 ⇒ NM =
total c− cNI − (e+m)NI

c− i

and for the second
mNI − iNM = 0 ⇒ NM =

m

i
NI

.

4

Figure 9: Here we plot the nullclines of the system. Where they intersect is the steady state solution.

3.5 Analytical solutions to differential equations

The differential equations
dNI

dt
= cNP − (e+m)NI + iNM

dNM

dt
= mNI − iNM

dNP

dt
= eNI − cNP

can be rewritten as

dNI

dt
= cT − (e+m+ c)NI + (i− c)NM

dNM

dt
= mNI − iNM

where T is the total possible synapses, and T = NP +NI +NM .
This system of ODEs can be written as

s⃗′(t) =
d

dt

[
NI

NM

]
=

[
−(e+m+ c) (i− c)

m −i

] [
NI

NM

]
+

[
cT
0

]
An analytical solution of the form s⃗(t) = s⃗h(t) + s⃗p(t) can be found, where s⃗h and s⃗p denote the

homogeneous and particular solutions, respectively. The solution to the homogeneous case is in the form

s⃗h(t) = c1v⃗1e
λ1t + c2v⃗2e

λ2t

where λ1, λ2 are the eigenvalues of the matrix, v⃗1, v⃗2 the eigenvectors, and c1, c2 constants. The eigen-
values are

λi =
−(e+m+ c+ i)±

√
(e+m+ c+ i)2 − 4(ei+ ic+mc)

2

and the eigenvectors

v⃗i =

[
1
m

i+λi

]
The constants c1, c2 can then be determined from the initial values, i.e. NI(0) = 0, NM (0) = 0. We get

that

c1 =
−λ2cT (i+ λ1)

(λ1 − λ2)(ei+ ci+ cm)
, c2 =

−λ1cT (i+ λ2)

(λ2 − λ1)(ei+ ci+ cm)

5

For the particular solution (the inhomogeneous case), we use the method of undetermined coefficients.

Given that the inhomogeneous term is

[
cT
0

]
, we let s⃗p(t) = k⃗ =

[
k1
k2

]
, which gives s⃗p

′ =

[
0
0

]
Substituting

this into our differential equation for s⃗′ gives[
0
0

]
=

[
−(e+m+ c) (i− c)

m −i

] [
k1
k2

]
+

[
cT
0

]
This allows us to solve for k1, k2, yielding

k1 =
icT

ei+ ci+ cm
, k2 =

mcT

ei+ ci+ cm

We now have a full expression for the solution:

s⃗(t) = c1v⃗1e
λ1t + c2v⃗2e

λ2t + k⃗

3.6 Disproving the bump

We want to ask whether or not it is possible for a “bump” to occur in the joint NI +NM populations, or if
this combined population necessarily increases monotonically. In order to analyse the combined population,
we take the analytical solution s⃗(t) = c1v⃗1e

λ1t + c2v⃗2e
λ2t + k⃗, and sum the two rows of the system of

equations, i.e.

Combined population (C.P) = c1v11e
λ1t + c2v21e

λ2t + k1 + c1v12e
λ1t + c2v22e

λ2t + k2

= c1e
λ1t(v11 + v12) + c2e

λ2t(v21 + v22) + k1 + k2

To test for the existence of a “bump”, we find the derivative of this expression:

d

dt
C.P. = λ1c1e

λ1t(v11 + v12) + λ2c2e
λ2t(v21 + v22)

In order for there to be a bump, there must be a t such that the derivative is equal to 0. Setting it equal
to 0 gives

λ1c1e
λ1t(v11 + v12) = −λ2c2e

λ2t(v21 + v22)

⇒ eλ1t

eλ2t
= e(λ1−λ2)t =

−λ2c2(v21 + v22)

λ1c1(v11 + v12)

We solve for t:

(λ1 − λ2)t = ln(κ) ⇒ t =
ln(κ)

λ1 − λ2

where

κ =
−λ2c2(v21 + v22)

λ1c1(v11 + v12)

Therefore, t exists when κ > 0. In order to disprove the existence of a bump, we need to show that κ < 0
always. Let us substitute in the expressions of c1, c2 presented above.

⇒ κ =
−λ2(

−λ1cT (i+λ2
(λ2−λ1)(ei+ci+cm)

)(v21 + v22)

λ1(
−λ2cT (i+λ1

(λ1−λ2)(ei+ci+cm)
)(v11 + v12)

=
−(i+ λ2)(λ1 − λ2)(v21 + v22)

(i+ λ1)(λ2 − λ1)(v11 + v12)

Now let us write in the terms for v11, v12, v21, v22:

κ =
−(i+ λ2)(λ1 − λ2)(1 +

m
i+λ2

)

(i+ λ1)(λ2 − λ1)(1 +
m

i+λ1
)

=
−(λ1 − λ2)(i+m+ λ2)

(λ2 − λ1)(i+m+ λ1)

The part of the expression (λ1−λ2)
(λ2−λ1)

is −1, which means

κ =
(i+m+ λ2)

(i+m+ λ1)

Substituting in the formulae we have for the eigenvalues yields

κ =
(i+m+

−(e+m+c+i)−
√

(e+m+c+i)2−4(ei+ic+mc)

2
)

(i+m+
−(e+m+c+i)+

√
(e+m+c+i)2−4(ei+ic+mc)

2
)

6

=
i+m− e− c−

√
(e+m+ c+ i)2 − 4(ei+ ic+mc)

i+m− e− c+
√

(e+m+ c+ i)2 − 4(ei+ ic+mc)

Multiplying top and bottom by the denominator’s conjugate yields:

κ =

(
i+m− e− c−

√
(e+m+ c+ i)2 − 4(ei+ ic+mc)

)2

(i+m− e− c)2 − (e+m+ c+ i)2 + 4(ei+ ci+ cm)

The numerator is always positive, therefore we need only check the denominator. Simplifying it gives
−4em, and since e,m are positive, −4em is negative, making κ < 0. Therefore, there is no t such that the
combined population’s derivative equals 0.

4 Weight-Dependent Random Walk Model

Above we simplified the approach by just removing the mature synapses with size 0, but we next model
the mature-to-immature transition in a weight-dependent manner. We do this by defining a probability
function over synapse size. Realistically, this must capture the fact that smaller synapses are more likely
to demature (and large synapses are very unlikely to demature). This can be modelled simply with an
exponential function

p(s dematuring) = Ae−
s
λ

where s is the synapse size, and A, λ are parameters determining the exponential function. e.g.,

Figure 10: Exponential function for A = 0.05, λ = 2. Here we have A = 0.05 as this was the value
of i used in previous simulations.

Adopting this in a constant timestep stochastic state transition model, we get the following:

Figure 11: Single simulation of populations
using weight dependent dematuring

probabilities
Figure 12: Final distribution of synaptic sizes.

7

5 Weight-Dependent Differential Equation Model

We similarly use this weight dependent idea in a differential equations setup, where we determine the rate
of mature-to-immature by the exponential pdf. This gives:

Figure 13: Differential Equation solution of
populations using weight dependent

dematuring probabilities
Figure 14: Final distribution of synaptic sizes.

Running this over some trials and comparing the probabilistic version with differential equations:

6 Variable rates of creation and elimination

We now model the rates of synapse formation (c(t)) and elimination (e(t)) in a time-dependent manner. We
try this using exponential functions such that the rates start off higher and then decrease to a baseline k.

c(t) := A1e
−t
λ1 + k1

e(t) := A2e
−t
λ2 + k2

We use A1, A2, λ1, λ2, k1, k2 = 0.2, 0.1, 30, 10, 0.2, 0.2, which makes these functions look like follows:

8

Implementing this (along with the weight-dependent dematuring approach as above), gives us something
like the plot below.

Figure 15: Immature, mature, combined populations over time modelling with time-dependent rates.

9

7 Tracking times in each state

We would like to be able to examine in the model how long each synapse lasts in the three states (resource
pool, immature state, and mature state). Here is an example of the states of a single synapse across time,
using constant rates

c, m, e, i = 0.2, 0.2, 0.01, 0.05

Figure 16: Example keeping track of single synapse: times spent in each possible state.

We can illustrate the distributions of durations in the three states across all synapses:

Figure 17: Distributions of time spent in the three states. Mean times 4.9, 4.6, and 23.6.

8 Example Optimisation

Julia’s Optimization.jl package is useful for formulating a problem and finding optimal parameters. For
instance, I defined a function which runs the model, finds the stable value of the mature population, compares
it to a target value (in this case 100), and calculates the squared error. This function gets passed into an
optimiser in order to find the rate parameters that will minimise this error (i.e. give a mature population

10

of 100). I provide it with an initial guess, a lower and upper bound, and then it runs (for several minutes).
Code:

function_to_optimise()

...

mature_population

target = 100

error = mature_population - target

return error^2

end

Define initial guesses for parameters c, m, e, i

x0 = [0.5, 0.5, 0.1, 0.1]

lower_bounds = [0.0, 0.0, 0.0, 0.0]

upper_bounds = [2.0, 2.0, 2.0, 2.0]

Set up the optimization problem with bounds

opt_function = OptimizationFunction(function_to_optimise, Optimization.AutoForwardDiff())

prob = Optimization.OptimizationProblem(opt_function, x0, p, lb=lower_bounds, ub=upper_bounds)

Solve the optimization problem using LBFGS

result = Optimization.solve(prob, LBFGS())

This give the values of 0.6820606226870286, 0.3896891612648679, 1.1943516162074415, 1.2748396318634099
for the parameters, which does indeed give a stable mature population of 100.

11

9 A Possibility – Work in Progress...

9.1 Calculating the average mature-to-immature fraction

The plan for the next step is to try make this a bit more analytically or computationally tractable. The idea
is to work out the stationary limiting distribution p1 of the synapse sizes (from the Kesten process, subject
to certain conditions), and using the exponential weight-dependent probability function p2, calculate the
“average” fraction of synapses that make the mature-to-immature transition with the integral from 0 to ∞
of the product of p1 and p2. This may be calculable analytically (I have yet to work it out, seems hard), but
if not, it can be done numerically (e.g. Julia’s QuadGK package was used below). This “average” value can
then be implemented in a probabilistic state transition model, or in the differential equations model.

Figure 18: Limiting log-normal synapse size distribution (orange), exponential weight-dependent
dematuring pdf (green), and their product (purple)

Using the distributions given above,
∫∞
0

p1p2 ≈ 0.0191 (QuadGK numerical integration package). Im-
plementing this value in the state transition model from Section 5 gives the below simulation:

Figure 19: State transition model using constant average dematuring fraction of 0.0191

9.2 Incorporating developmental periods

The above models outlined above could be considered to only deal with a specific age in brain develop-
ment because the parameters c,m, e, λ, σϵ, ση are all fixed. Ultimately we want these to vary across the
developmental trajectory. We will do this either by

• Fitting the model parameters separately to the data at each developmental timepoint recorded

• Fitting some parametric function for each parameter to model its smooth change across development
(i.e. fitting all the developmental timepoints in one go).

12

